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SOME RECENT DEVELOPMENTS IN SYSTEM RELIABILITY*

0.0 Abstract

-A-ystem reliability analysis calculates the probability of success for a

system, based on the component reliabilities and the configuration. First, a

logic function is obtained in the form of either a tree, chart, graph, diagram

or list of paths. From this logic function a prodidttity formula is derived.

The classical or conventional method of generating a formula is inclusion-

exclusion (IE).

With the past decade there have been some significant new developments

that resulted in ways to estimate the system reliability that are more

efficient than IE. Two of these techniques are discussed in this paper: sum

of disjoint products (SDP), and the topological reliability (TR) of

Satyanarayana and Prabhaker (S&P). This paper covers the theory and

procedures of both techniques, shows their interrelationships with IE, and

discusses complexity considerations and computer time needed for preparation

of a system formula. The discussion on TR also includes advanced applications

such as overall reliability and k-terminal reliability, classes of problems

that can conveniently be solved by TR with minor modifications of the logic.

*In preparing this report, I have benefited from discussions with A.
Satyanarayana, Stevens Institute of Technology, R. E. Barlow, UC Berkeley, and
W. G. Schneeweiss and K. D. Heidtmann, both of Fernuniversitat, Hagen,
Germany, D5800.
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1.0 Introduction

System reliability analysis deals with designing and synthesizing

networks of elements that function jointly towards a common goal, and estimat-

ing the probability of success. Examples of applications of system reliabili-

ty include: space missions, military missions and hardware development

projects, nuclear power generation accident prevention, software reliability,

oil drilling, management information systems, communications in complex net-

works and civilian product R&D and distribution programs.

The system is represented by a graph showing the components and their

interconnections and logical interrelationships. A probability formula is

derived from the graph; then the component probabilities are substituted into

the formula to obtain the probability of success. The best known method of

obtaining a formula from a system graph is inclusion-exclusion (IE). It is

usually assumed both for simplicity and realism that the system is coherent.

The term "coherent" means that success is defined by a set of minimal subsets

of elements, all elements in the subset operating successfully; these subsets

are called paths, minimal paths or minimal path sets. With IE, the system

probability formula is built up recursively, one path at a time.

In the past decade there have been some significant new developments.

Fratta and Montanari [4] (1973) published an algorithm for obtaining a system

reliability formula by means of sum of disjoint products (SDP). In 1978

Satyanarayana and Prabhaker [10] (S&P) introduced topological reliability (TR)

as an alternative to IE to obtain a formula for coherent single-source to

single-terminal (s-t) networks, by a search process. In 1979 Abraham [1]

published an improved version of SDP. These papers have had a significant

impact upon system reliability, because both TR and SDP are more economical

ways of generating formulas than recursive IE. As a result, it is now

4



possible to process larger and more complex systems than heretofore, with less

computer time and a smaller memory. The purpose of this paper is to present a

description of both SDP and TR, and to show why they are superior to conven-

tional methods.

1.1 Sum of disjoint products

The economies of SDP are due to a simple but important principle: it the

terms of the logic function are disjoint with no sets in common, then the

logic function is the same as the probability formula. by the addition law of

probabilities, the formula is entirely additive.

As with IE, the SDP system formula is obtained from the paths. With IE,

however, because sets of joint paths are alternately included and excluded,

the terms obtained at every recursive step alternately add and subtract

probabilities; since there are as many subtractions as additions, when there

is extensive redundancy the polynomial formula can be very long. With SUP,

however, the formula is a sum of additive terms only. Experience has shown

that an SDP formula for any but very small systems is smaller than IE, and an

order of magnitude smaller for a very large system.

1 .2 Topological reliability

In their paper on TR, S&P showed that the noncancelling terms of an IE

formula are 1:1 with certain subsets of the system graph, called the p-acyclic

subgraphs. In TR all p-acyclic subgraphs are identified, without any

duplications, by a search process that systematically strips edges so as to

find the p-acyclic subgraphs as well as their signs (+ or -) in the system

probability formula; at the same time the formula is derived in nested and

factored form, equivalent factor by term to the IE polynomial, but with fewer

computer operations and less memory needed to derive the formula or to

calculate the probability of success.

5 -
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In addition to the saving in computer time and memory, another advantage

of TR is that a wider class of applications is possible than with conventional

IE. Undirected networks with two-way edges can be processed as easily as

directed networks with only one-way edges by substituting two one-way edges in

opposite directions for the two-way edges. Reliability formulas can be

obtained for communications networks more complex than s-t, with minor

modifications of the techniques and software. For example, certain networks

have all terminals communicating with each other; this is called "overall

reliability." Another example is having every mei~il6 of a specified subset

communicate with every other member; this is called "k-terminal reliability."

In this report examples are provided to show the simple rearrangement that

converts an overall problem or a k-terminal system into a graph of acceptable

form for TR.

When a new process or technique is first introduced, there can be

difficulties in interpreting and using the results, even when it proposes

significant improvements over the incumbent way of doing things, because there

is a need for a new terminology that has not been fully developed; as a result

the explanation can be overly long on some topics and too brief on others.

Such is the case with the S&P description of TR. In this report, we have

attempted to simplify the description, while preserving the essence of the TR

method, making some minor changes in the terminology and omitting the

mathematical theorems and proofs.

1.3 Highlights of this report and summary of findings

Our major results are as follows:

1. All three algorithms, conventional IE, SDP and TR, are NP-complete;

this means that it cannot be guaranteed in general that a large problem can be

solved in polynomial time or linear time, but that it may be possible to do so

in certain special cases.

6
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2. Like IE, SDP yields a system reliability formula which is a

polynomial in the probabilities of the elements; unlike IE, the terms are

disjoint. Experimental results show that for large systems, SDP provides a

formula with fewer terms.

3. In the special case of an m-out-of-n system, by ordering the paths in

a certain way, the SDP formula is linear in the number of terms and polynomial

in the number of variables in the system probability function.

4. We provide proofs of aspects of SDP: the inner and outer loops of

the Abraham algorithm, and the counting of computer VL1 ations for m-out-of-n

system formulas with an ordered set of paths.

5. We describe the special relationship between the system reliability

formulas obtained by TR and IE. These two different versions give the same

result, but IE obtains a string of polynomial terms, whereas the TR formula is

in nested and factored form.

6. This report also includes detailed aescriptions and explanations of

both the terminology and procedures of topological reliability, as a

supplement to the seminal 1978 paper by S&P. The terms include: p-graph,

p-acyclic graph, p-cyclic graph, search tree terms and family relationships

between nodes of the search tree, neutral sequences, formations and

dominations, and the relationship between domination and + or - signs. The

processing rules include: the weight restriction, the four search processing

rules, and the procedure for backtracking and stopping.

7. Although there are some difficulties in adapting to the new TR

terminology and algorithm, it is well worth the effort if large problems are

to be processed by a computer. TR has many advantages over IE, including:

fewer variable entries in the formula, less computer time, virtually no

storage and greater flexibility for processing a wider variety of networks

7
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than the source-to-terminal problems that are discussed in practically all ot

the system reliability literature that has been published to date. These

advantages make up in part for the fact that the algorithm is NP-complete, and

make it possible to have large problems run in a reasonable amount of computer

time.

2.0 Definition of a system

The reliability of a system differs from that ot a component primarily in

the way it is assessed. The reliability of a component is evaluated from test

data; by contrast, the reliability of a system r~quites component data and the

logical configuration of the elements contributing to either success or

failure. System reliability is commonly referred to as "prediction" because

the probability of success is estimated before there is sufficient test data

to objectively assess what the value of this probability is.

2.1 Network reliability graphs for success

The system is a network graph G o of functioning components, elements or

variables. In the success orientation, every edge of GU is a component and

every vertex is a logical connection between two or more components. An edge

can also represent successful avoidance of a failure type, a "failure mode"

that does not occur.

A string connecting two or more edges is a sequence with all of the

components required for success. A parallel connection of two or more edges

or sequences between the same two vertices denotes redundancy. An unbroken

string from a source vertex s to a terminal vertex t with no failures in the

string is system success; this string is called a path, sometimes also minimal

path, minimal path set or simple path. The system reliability is the

probability that there is at least one path in GU--the probability that there

is at least one path with no component failures.

a!
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2.2 Fault trees: network reliability graphs for failure

An alternative to the success oriented graph is a logical diagram of

failure dependencies, frequently called a fault tree. The elements of the

graph are failure modes. The connections between elements are logic gates, c-i

and-gate denoting joint failure of the elements, or else simultaneous trans-

mission of the effect of failures from lower level gates. Another way of

saying this is that an and-gate denotes the effect of failures ot redundant

elements or subsystems. An or-gate denotes the transmission of the effect of

the failure of one or more components or or subsydEMIiIs, as, for example, a

serial connection in a success logic diagram.

With fault trees, instead of just one source and one terminal as in s-t,

there are multiple sources, representing all the different component and

subsystem failure modes, and one terminal, called the top event, failure of

the system. A smallest set of elements for failure is called a cut, sometimes

also called minimal cut or minimal cut set; the system reliability is the

probability that there are no cuts. It is shown in (61 that the cuts can be

derived from the paths, or vice versa. Fault tree reliability analysis has

become popular in the past decade, largely as a result of the WASH-i 400 report

on the safety of nuclear power plants [111, and the concern of the public for

nuclear safety.

In this report, the description will be entirely with success oriented

graphs rather than with fault trees, because the literatures of SDP and TR

both trace paths and success logic, rather than failure logic and cuts.

2 .3 Inclusion-exclusion

The conventional way of calculating the reliability of a system is the

method of inclusion-exclusion (IE), also known as Poincare's Theorem. IE is

derived from first principles in the same way that logicians and probabiliL

.,9
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build Venn diagrams: first add the probabilities of the separate events; then

subtract the probability of the joint event. The buildup alternates addition

and subtraction of the probabilities of joint events. The result is a

"- probability polynomial with alternating additive and subtractive terms;

substitute the component reliabilities into this polynomial and obtain the

- numerical value of the system probability of success.

" 2.3.1 The probability equation

The IE system reliability formula is built up recursively using as many

steps as there are paths, each path contributing an ,11ikement of success

probability represented by more terms of the polynomial. For example, if Go

4 is serial with just a single path, A, the probability of success P(A) is just

a single term, the product of the reliabilities of all the elements of A. Let

. us suppose there are two alternative paths, A and B. The probability of

success, P(A or B), is a polynomial with three terms, the sum of the

probabilities of both of the paths, P(A) + P(B), minus the probability of the

joint event P(A and B), because the joint event is included in both A and B

and would be counted twice if this exclusion were not made. The result is an

equation with three terms

P(A or B) = P(A) + P(B) - P(A and B). (1)

Suppose Go has n paths; n is any integer greater than 2. The recursive

buildup of the formula is an extension of Bquation (1). With n paths,

Ai,...,An, by mathematical induction the reliability is

P(Al or...or An) = P(Al or...or An.) + P(An) - P(Al and...and An).

It is shown in Reference [3] that the system equation has the following form:

let S 1 be the sum of the probabilities of the n paths, S2 the sum of the joint

probabilities of the n paths taken two at a time, S 3 the sum of the joint

probabilities of the paths three at a time, etc. The system reliability is

4 10



R S- S 2 + S 3 - ... + (_1)n-1S n -

If there are n parallel paths with no overlapping elements between the

paths, the formula has the maximum possible number of terms, 2n-I. However,

if there are overlapping elements, as is usually the case, there is extensive

cancellation, so that the actual number of terms turns out to be a small

fraction of the maximum number. Because the buildup alternates an inclusion,

or an addition of probabilities, with an exclusion, or a subtraction, the

number of terms is odd and there is always exactly one more term with a + sign

than with a - sign. If the equation has 2m+1 terms, an odd number, then m

terms have - signs and m+1 terms have + signs.

3.0 Sum of disjoint products

With IE the number of recursive steps is equal to the number of paths and

the system polynomial is derived by alternately adding the probabilities ot

events with + signs and subtracting probabilities with - signs. Like IE, the

sum of disjoint products (SDP) method derives a polynomial recursively, in the

same number of steps as there are paths. Unlike IE, however, the formula is

entirely additive: there are no exclusions and every term has a + sign.

3.1 Disjoint terms: the addition law

The addition law of probabilities is the underlying justification for

SDP. If two or more events have no elements in common, the inclusive-or

probability that at least one of them will occur is the sum of the probabili-

ties of the separate sets. For example, with two events A and B, let A denote

4 the complement not-A; and let A-and-B denotes B-and-not-A. Then we have

P(A or B) = P(A) + P(A and B).

Similarly with three events A, B, C

P(A or B or C) = P(A) + P(K and B) + P(K and B and C).

With n events Ai,...,An by mathematical induction

6 11



P(AI or...or An) = P(Ai ) + P(A1 and A2) + P(A1 and A2 and A3 )

+ P(Ai and AnI and An)* (2)

3.2 The outer loop

There are two types of recursive steps in the Abraham version of SDP:

the major step or outer loop, which is derived from the incumbent path; and a

series of inner loops generated by inverting and reinverting components that

were included in prior steps of the recursion, but not in the incumbent path.

Each inner step results in a term that is disjoint with all other terms of the

polynomial. The sum of the term probabilities for the incumbent path is the

net increment of probability accounted for by the path.

Let us characterize all of the components of A, as being "one-valued" and

their complementary or inverted values as "zeroes." For convenience, call the

components of path Aj "Group 1" and all those of the prior paths Al,...,Aj_

but not in Aj "Group 2." Group-1 elements are always one-valued in all of the

terms generated at major step j. Group-2 elements are inverted to the zero

value, and th.-n if necessary reinverted back again to the one value. The

Abraham algorithm does not require that all Group-2 components be at the zero

value, nor that they all be in every term of the system reliability function.

3.3 The inner loop

At outer step j, assume there are n variables in Group 2; arrange these n

variables in subscript or lexicographical order such as xl,...,x n. Select a

subset xl,.*..Xm, m<n, of the n variables in Group 2 such that if every

variable in the subset were inverted to its zero value, xl,...,Xm, there would

be at least one zero in every one of the prior paths A1,...A9,Aj_ I. Concatenate

tx1,...,x m } with the one-valued elements of Aj; this forms the first inner

term at outer step j. Each subsequent inner step both reinverts a variable

from {X1,...,xml to its one value and at the same time appends a zero-valued

variable from the {Xm+1,...,x n } subset of Group 2.

12



3.4 Example

For example, with three paths {A,=123, A2 =456, A 3=1789}, the single term

formed at outer step 1 is 123. The results of the recursion are given step-

wise, with each line representing an outer step and each term an inner step.

R 1 = 123

R = R + 1456 + 12456 + 123456

R 3 = R2 + 12 4789 + 123 4 789 + 12345789 + 123456789.

To compare SDP and IE for this case, with IE the same three paths form a

probability polynomial with seven terms in three jeps as follows:

R I = 123

R = R 1 + 456 - 123456

R3 = R + 1789 - 123789 - 1456789 + 123456789.

In this particular case, with a low order of redundancy IE results in a

smaller polynomial, with 7 terms, while SDP has eight terms. This is very

rare; with larger systems SDP always yields a smaller polynomial, in some

cases an order of magnitude smaller.

3.5 Proof of SDP

The proofs of the inner and outer loops of SDP are revised from [7].

Theorem 1 covers the inner loop and Theorem 2 the inner loop. The symbolism

omits the usual zero-one structure function. Since the logic function and the

probability function of SDP are 1:1 because of disjointness, the "+" sign is

interchangeable either for Boolean "either-or" logic or for arithmetic

addition, where the meaning is clear from the context. Likewise, multiplica-

tion can be either Boolean "and" or else an arithmetic operation. /

3.5.1 Proof of the outer loop

Theorem 1: Let the system have n paths AIi*.*An* The reliability is

R = A1 + A2 +...+ An = A1 + A1A 2 + A1 A2 A 3 +...+ A1...AnlA n .

13



Proof: Note the similarity to (2). The proof is by induction, using De

Morgan's theorems.

R = Al + A2 + ... + An

= [Ai+AiA 2+.o.+AA 2 n...An_ 2AnI] + (Ai+AiA2 +*..+AA 2 ...An_ 2AniJAn

P- .,.] + AI(AI+A 2).,,(A+A 2+..An_ 2+AnI)An

-[o.,] +AIA 2 ... iAn. QED

In this proof all of the terms in the multiplication cancel except one,

because of contradictions of the form AiAi.

3.5.2 Proof of the inner loop

At each step of the inner loop, the Group-2 components are alternately

inverted and then reinverted. Theorem 2 shows how to sequence the inversions.

The statement of Theorem 2 is similar to Theorem 1 and the proof is a mirror

image of the proof of Theorem 1

Theorem 2: Let A = x1,...,x i be a set of i 1-valued zero-one variablesy then

A = x1 + x1x 2 + xlx 2x 3 +...+ Xlx2..xi-ix i .

Proof, by induction, with De Morgan's theorems:

A = x, + x2 +...+ xi

= (x1+x 1x 2+...+x 1x2 ..xi_2xi 1] + [x1+xlx2 ...+x1,0.xi_2xi_1]xi

- (...] + xl(xl+x 2 )...(x+x 2+...+xi-2+xil)xi

S...] + x1x 2...xi_iXio QED

3.6 Comparing algorithms: SDP vs IE

3.6.1 Exponential property of SDP and IE

Both SDP and IE have the same property, known as "exponential time,"

sometimes also "NP-hard" or "NP-completeness." This terminology covers the

results of "worst-case" analysis of the number of computer operations required

to process very large problems. The reason these processes are exponential is

that under the most extreme conditions, both the size of the resultant

14
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*. formula and the computer time are exponential functions of the size ot the

system.

The worst case for either IE or SDP has two conditions:

a. the formula has the maximum number of terms; if there are m paths,

there could be as many as 2m-I terms

b. each term is the maximum possible size; if there are n components

in the system, each term would have n variables.

These conditions would not occur in a realistic problem. Condition b is

unlikely, because the algorithms develop the formul-n such a way that some

terms are smaller than others. Likewise, if every term has the same components

and all of them have the same value, there would be extensive cancellation and

condition a would not hold. If condition a were true, the system would be

strictly parallel with no overlapping elements between paths; this could be

solved more easily by series and parallel reductions rather than by overloading

the computer with work that it could not process at reasonable cost.

3.6.2 Experimental results: smaller formulas with SDP than with IE

Experimental software has been developed at Oklahoma State University to

run problems using both SDP and IE. The results of running five problems,

reported by Chao [21, show that even though SDP has the exponential property,

it is more efficient than IE in that fewer terms are generated for the system

reliability formula.

case paths components terms

SDP IE

1 4 7 5 11

2 6 8 8 27

3 13 12 23 123

4 24 12 71 495

5 35 21 787 5287

15
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3.6.3 Favorable cases for SDP analysis

A useful feature of SDP for certain special cases is that if the paths

are ordered so that every path differs from its immediate predecessor by

exactly one variable, the number of terms in the SDP reliability formula is

equal to the number of paths, and the size of the formula is at most a

polynomial function of the number of variables. This situation can be

characterized as follows: given two successive paths A and B, with B

following A, one variable in B is not in A and one variable in A is not

included in B. In this case, only one variable is inverted and both the outer

and inner loops consist of a single term. Two examples are described below:

a strictly parallel system with n components, each component consisting of a

single path, and an m-out-of-n system.

For the first example, assume there are n parallel components,

x1, x2,...,xn in a system that requires only one of these components for

successful operation. Following the outer loop, Theorem 1, the SDP formula

is

R = x, + x1x 2 + xlx 2x 3 + ... + x1x2...xnixn.

In this formula, there are n terms, equal to the number of paths. The number

of data processing operations and computations performed is a function of n2 .

This can be demonstrated by the well known sum of digits. Since the first

term has one variable, the second term has two variables, etc., . •., the

n-th term has n variables, the total number of variables in the formula is

1 + 2 + ... + n = n(n+1)/2 = n 2/2 + n/2.

The n2/2 term dominates, and the number of operations depends upon n2.

For the second example of a favorable case for SDP analysis, an m-out-of-

n system is a voting circuit for which m, m<n, components are required for

success. If we order the paths so that every path differs from its
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predecessor by exactly one component, the number of terms is equal to tne

number of paths. The details of this procedure are discussed in [8]. One

example, a 2-out-of-4 system, is used to illustrate. Suppose the system has

four components: A,B,C,D. There are six paths: AB, AC, BC, biD, AD, CD. Ths

SDP formula is

R = AB + ABC + ABC + ABCD + AB 3) + A BCD.

There are 6 terms, equal to the number of paths. Under worst case conditions,

there could be as many as 4 variables in each term, or 24 variables

altogether. The general rule is that the maximum Mtler of variables is nm+1.

This is proved as follows: by the binomial counting process there are

n!/((n-m)!m!) terms, and each term could have n variables; hence the maximum

number of variables in the system reliability formula is n.nl/((n-m)!mI), or

approximately nm+1 .

4.0 Topological reliability

4.1 Introduction

Topological reliability (TR) was introduced in 1978 in a seminal paper by

Satyanarayana and Prabhaker (S&P) to obtain a system-reliability formula by

tree-oriented search. In that paper S&P demonstrated the fundamental fact of

TR, that there is a 1:1 relationship between certain subgraphs, called the

p-acyclic subgraphs of the system reliability graph, and the noncancelling

terms of the formula. Therefore, if we can identify the p-acyclic subgraphs,

we can also save processing time in deriving the formula, because there will

be no duplications or cancellations.

TR decomposes the system graph by systematically stripping away edges and

sequences of edges to find the p-acyclic subgraphs. Simultaneously the system

reliability formula is generated. Instead of a polynomial, as in IE, the

formula is in a nested and factored form that is equivalent factor by term to

17
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the IE polynomial and follows the order of the search. Each factor also has

the same sign as the corresponding IE term. The description of TR in this

section follows the terminology, concepts and rules that S&P incorporated into

TR, with certain minor exceptions that are noted whenever it is necessary to

do so.

4.2 Concepts

4.2.1 p-graphs, p-acyclic graphs, p-cyclic graphs

A p-graph is a subgraph of the system graph Go, with every edge of the

subgraph on a path, denoting success, from the sourdd Vbrtex s to the terminal

vertex t. An acyclic graph has no cycles; a cyclic graph has at least one

cycle. A p-acyclic graph is a p-graph with no cycles; a p-cyclic graph is a

p-graph with at least one cycle. Figure 1 has some examples of the different

types of graphs.

4.2.2 Search tree

Tree search identifies the subgraphs of Go, and determines how they

contribute to the reliability formula. Every node of the tree represents a

subgraph and every internode denotes the removal of either an edge or a

sequence of edges to form a subgraph at the next node. The term "internode"

is borrowed from biology; it represents the connecting line between two

connecting nodes in the same branch at different levels. If the subgraph from

which the string is removed is p-acyclic, the string is a "neutral" sequence

and the resulting subgraph is also p-acyclic.

A search tree may be rooted at the left of the page or the right, the top

or the bottom; the form S&P use is the starting point, called the root,

representing Go at the top, and the tips of the branches, called the leaves,

at the bottom. A leaf may be a path, the smallest possible type of p-graph;

it can also be the end of a branch that is bypassed because of a backtracking
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rule. The tree may be visualized as an upside-down Christmas tree with the

functions inverted, the root at the top instead of the bottom, growing down-

ward instead of upward, and with the tips of the branches at the bottom.

4.2.3 Family relationships of nodes

The descriptive family names of nodes of the search tree have a natural

genealogy that follows ordinary usage of the same terms. At any given node

G1 , a subgraph of Go , the nodes obtained by branching outward and downward are

children, and Gi is the father. Nodes above Gi in the same branch are

ancestors and nodes below Gi in the same branch are dbscendants. Two or more

nodes with the same father are brothers. The order of priority in processing

determines which is the elder brother and which is the younger brother. In

this report, the order of processing is from right to left; thus the elder

brother is on the right branch and the younger brother on the left branch.

Figure 2 gives the family tree of Gi.

4.2.4 Neutral sequences

A neutral sequence is a consecutive, string ot vertices and edges in a

p-acyclic subgraph with no internal vertices connecting to other parts of the

subgraph. Removing a single edge breaks the connection between s and t. In

order that every child of a p-acyclic subgraph shall also be p-acyclic, only

neutral sequences are removed.

4.2.5 Formations and dominations: the sign of a factor in the formula

Two related concepts from graph theory, formation and domination, help

explain how the signs of the factors in the system reliability formula are

obtained. Understanding these concepts provides insights into the connection

between the construction of a subgraph and its contribution to the formula, as

well as the procedural short cuts of TR.

A formation F of a p-graph G is a union of paths that includes all of the

vertices and edges of G. F is odd, with a sign of +1, if the number of paths
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in G is odd, and even, with a sign of -1, if the number of paths is even. The

domination D of G is the sum of the signs of all the formations ot G.

S&P showed that for a p-acyclic subgraph of Go, D is always either +1

(i.e., there is one odd formation more than the number of even formations) or

-1 (one more even formation than the number of odd formations). For a

p-cyclic subgraph, D=O; a p-cyclic subgraph has the same number of even

formations as odd formations. An important proot that D=0 for a p-cyclic

graph was given by Willie [12].

There is a relationship between the constructidh ot a subgraph Gi and D

that makes it possible to find the sign of the factor corresponding to Gi in

the system reliability formula, without identifying or counting the

formations. If D=+1, the factor has a + sign; if Df-1, the factor has a

- sign; and D=0 means that the subgraph is p-cyclic. The simplification is

that it is only necessary to count the vertices and edges of a p-acyclic

subgraph in order to find the value of D. If the difference between the

number of vertices and the number of edges is odd, D=+1 and the sign of the

factor is positive; if the difference is even, D=-1 and the sign is negative.

In order to find the sign, it is usually not necessary to count vertices

and edges. Since the child of a p-acyclic father strips away a neutral

sequence, the number of edges removed is one greater than the number of

vertices removed. For example, if the neutral sequence is a single edge, no

vertices are removed; if the neutral sequence is a string of two edges, the

only vertex removed connects these two edges, etc. As a result, the signs of

the nodes at successive levels of the search tree alternate. Once a p-acyclic

ancestor is attained, the signs of all of the descendants are obtained simply

just by alternating plus and minus.
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4.3 Formulating the system graph: two-way edges

The system reliability graph GU has standard success logic; 4 seridl

connection of components in a subpath means tnat all the components in the

subpath are needed for success, and a set of parallel connections means

redundancy. A minor modification of the graph is needed when one or more of

the edges is two-way. Since a two-way edge is a cycle, two one-way edges in

opposite directions are substituted for each two-way edge, to facilitate

subsequent decycling of the graph.

4.4 The rules of tree search

4.4.1 The weight restriction

The subgraphs and the corresponding factors of the topological

reliability formula are obtained in the search, without any duplications. The

principal reason there are no duplications is a rule which we shall call the

weight restriction (WR). The set of edges stripped from Go by Gi and by the

father and all of the ancestors of Gi is the weight of G i . The WR requires

that Gi may not remove any edge in the weight of the father, an ancestor or an

elder brother, or of an elder brother of the father or of an ancestor.

Explanation: removing an edge in the weight of the father or of an ancestor

would clearly be a duplication; removing an edge in the weight of an elder

brother or the elder brother of the father or an ancestor would result in

duplication of a subgraph that had previously been obtained in the search.

4.4.2 The four processing rules

The processing rules of TR are numbered simply: Rule 1, Rule 2, Rule 3

and Rule 4. The rules are applied in order of priority: Rule 1 first, Rule 2

second, etc. Each rule also incorporates the WR.

Rule 1: cyclic subgraph: if G i is cyclic, decycle Gi by removing the

edges on the cycle, except for those edges in the weight of an elder brother
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or of an elder brother of the father or of any ancestor. Explanation: create

children by stripping edges on the cycle, one edge per child.

The corollary to Rule 1 is that if a child of a cyclic graph is cyclic,

continue applying Rule 1.

Rule 2: acyclic subgraph that is not also a p-graph: at most one child

can be obtained by removing edges, subject to the WR. The edges removed need

not be consecutive. Explanation: the subgraph has a loose edge or edges not

on a path from s to t. If all of the loose elements are removed, the child is

p-acyc lic.

One or more of the loose edges may be in the weight of an elder brother

or the elder brother of an ancestor. Because of the WR, processing of this

branch of the tree stops, and there is a backtrack to the next available node

in order of priority.

Rule 3: p-acyclic subgraph with a non-p-acyclic father: if Gi is

p-acyclic and the father is not p-acyclic, remove all neutral sequences except

those containing edges in the weight of an elder brother or an elder brother

of the father or of an ancestor. Each neutral sequence removed results in a

child of Gi. Explanation: Rule 3 insures that the descendants will all be

p-acyc lic.

Rule 4: efficient decomposition of a p-acyclic subgraph with p-acyclic

father: if G i and the father are both p-acyclic, the internodal weights of

the children (i.e., the sets of edges removed from Gi by the children) are 1:1

identical with those of the younger brothers of Gi. Explanation: all of the

neutral sequences of G i were reviously identified when the children of the

father were generated. The WR is applied automatically, since Gi does not

strip edges that are in the weight of an elder brother or of an elder brother

of the father or of an ancestor. Since Rule 4 eliminates the need to search
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for children of most p-acyclic subgraphs, there is a substantial saving of

computer time.

4.4.3 Backtracking and stopping

The search has both forward and backward steps. In the forward steps, a

child and the descendants of the child of an elder brother are visited before

a younger brother. A backtrack takes place when a leaf is attained. A leaf

may be either: 1. a path; or 2. an acyclic subgraph such that if any more

edges are removed, either an open graph would result, or a violation of the

WR.

Backward search follows standard backtracking procedures. The next node

visited is the eldest younger brother, followed by forward search. If there

are no younger brothers, move the pointer one level up the tree and to the

left to the younger brother of the father, and continue forward; if the father

has no younger brothers, backtrack to the younger brother of the father of the

father, followed by forward search; etc. Backtracking stops when there are no

ancestors with younger brothers.

4.5 Deriving the system reliability formula

4.5.1 Node labels and processing order

Every subgraph descended from G o has an identifying label or sequence

number assigned in the forward search. The order that nodes are processed,

however, is different from the sequence number, because of the search rules.

All subgraphs are labelled, but a new factor for the formula is obtained only

when the pointer is at a node representing a p-acyclic subgraph.

4.5.2 The system reliability formula

Let Y be the probability of success of all the elements in the system

graph Go, the product of the probabilities of success of all the components.

Let Gi be a p-acyclic subgraph, di the domination of Gi, x i the internodal
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weight (i.e., the set of edges removed by Gi and by its non-p-acyclic father

and ancestors) and i the product of the reliabilities of all the elements in

xi . The system formula consists of a nested set of products and sums of

products of factors of the form d+.-10 The formula follows the search tree.

The following example and explanation illustrate the principles involved:
R = Y ((d 1+x 1- 1 )(d 2 +x2 - 1 ) +1)(d4+_4-1)).

In this expression each of the four factors corresponds to a p-acyclic

subgraph represented on the tree by a subgraph number node label. Multiplying

factors

(di +x_ I) (dj +xj -

follows from a parent-child relationship; xj is a p-acyclic child of xi .

Adding factor products results from backtracking; the senior or eldest branch

is the factor product to the left of the + sign and the junior branch is the

factor product to the right.

4.6 Example

4.6.1 The search tree: node labels and subgraphs

The parent graph Go has 9 edges, 6 vertices, a cycle and six paths. Go

is displayed in both Figure 3 and 4; Figure 3 has both Go and the search tree;

Figure 4 shows the subgraphs in the order they are visited.

Go is cyclic; following Rule 1, we strip the edges on the cycle and form

the children: G1, G2 and G3, respectively denoting removal of edges 2, 3 and

5. G, is acyclic, not p-acyclic; Rule 2 applies: the loose edges are all

removed to form G4, the path 4-6-9. Except for Go and G1 , all of the other 25

subgraphs are p-acyclic.

The backtrack is to G2, removing edge 3. G2 is p-acyclic and the father

is not p-acyclic. Rule 3 applies: all of the children and descendants are

p-acyclic. Now there are significant economies in the continuation of the
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search, because of Rule 4. None of the descendants of G2 nor the descendants

of any of the younger brothers remove edge 1, because of the WR. The children

of G2 are G5, G6, G7 and G8 , removing 4, 5, 7 and 8. G5, being the eldest,

and the descendants of G5, are visited before Gb, G7, G8 and their children.

By Rule 4, the children of G5 have the same internodes as the younger

brothers, G6 , G7 and G8 , edges 5, 7 and 8. Removing edge 5 from G5 would

leave edge 6 loose; therefore 5-6 is a neutral sequence removed from G5,

resulting in G9 . The other children are Gl0 and Gil, removing edges 7 and 8.

The remainder of the branch descended from 92 iS obtained easily because

of Rule 4. The branch descended from G3 is simplified for the same reason.

The simplifying principle is that when Gi and the father are both p-acyclic,

the edges removed to form the children are identical to the edges removed to

form the younger brothers of Gi.

4.6.2 The domination of a subgraph and the sign of a factor

The domination of a p-acyclic subgraph is either +1 or -1 and has the

same numerical value as the sign of the corresponding term in the system

reliability formula. There are two alternative ways to obtain the domination:

1. by counting vertices and edges: if the difference between the

number of vertices and the number of edges is odd, the sign and the

domination are both plus; otherwise, the difference is even, and the

sign and the domination are both minus.

2. in a branch consisting only of p-acyclic subgraphs, the signs

alternate at successive levels of the tree.

The first p-acyclic subgraph obtained in the search is G4 , a path with

four vertices and three edges; the domination is +1. The next node visited is

G2, with 6 vertices and 8 edges; the domination is -1. The descendants of G2

all alternate in sign at successive levels: nodes 5, 9, 12 and 13
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respectively have +, -, + and +; 10 and 14 have - and +; 11 has -; b, 15 and

16 have +, - and -, etc. Likewise G3 has - and all of its descendants

alternate in sign.

4.6.3 The TR system reliability formula

It is a remarkable fact that the TR formula is obtained directly from the

search tree. The formula is displayed in Figure 5, and it is almost self-

explanatory. The initial term 123456789 is the product of the reliabilities

of all the nine edges of Go. The factor (1234578)- I represents G4; the

product of the G0 initial term and this factor is the product of the

reliabilities of the three edges in the path 4-6-9. The + sign preceding 3-1

corresponds to the backtrack to G2, removing edge 3. G2 has a sign of -1;

this is the first term of the next factor. The eldest child of G2 is Ge,

removing edge 4; this results in the factor 4-1; since the signs alternate,

the domination is +1.

The process of generating factors and their signs continues: the factors

are the reciprocals of the products of the probabilities of the edges removed;

multiplications are parent-child relationships; additions are backtracks; and

the signs alternate.

Another notable aspect of the TR formula is the fact that fully expanded,

it is identical to the IE formula for G0. There are 25 terms, each term

representing a p-acyclic subgraph, and the signs of the terms in IE are

identical to the signs of the factors in TR.

5.0 Extensions of topological reliability: the unified approach

5.1 Introduction

We have shown in the foregoing sections of this paper that TR derives the

reliability formula of a coherent system that has a single source and a single

terminal.
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In 1982 Satyanarayana (91 showed that by modifying the graph, it is

possible to efficiently develop reliability formulas for systems that are more

complex than just s-t, by TR. Examples are: systems with every vertex being

both a source and a terminal in a two-way connection to every other vertex--

this is called "overall reliability;" and systems with mixtures of one- and

two-way connections. One special case that occurs in communications networks

is the "k-terminal problem": a subset of k of the vertices are compulsory

recipients of every message, with two-way communications between every member

of the k-subset, the other vertices primarily sekAVig the function of relays.

The key idea that makes this type of structural solution of a generalized

reliability problem is the "unified approach"--creating a supergraph with both

a dummy source s and a dummy terminal t, if necessary, and dummy edges

connecting members of the k-subset and s and t in such a way that a system

reliability formula is generated by TR in the same way it is obtained for

coherent s-t systems. The dummy edges are elder brothers to the rest of the

graph, and hence are never removed to form subgraphs, because of the weight

restriction.

5.2 Example: source-to-k-terminal (SKT) problem

The example is a four-vertex five-edge diamond shaped graph that differs

from a bridge circuit in that it has two terminals rather than one, both

terminals in the middle instead of at the right-hand edge, and one edge is

directed from right to left instead of from left to right. We shall call this

a K-graph, S3T, with K = 3. Since edge c goes both ways, it is replaced by

two one-way edges, cl and c2, in opposite directions. Both the original graph

and the replacement are shown in Figure 6.

The system reliability problem is to determine the probability that a

message received at the source vertex a at the left-hand edge will be
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communicated to both terminals, t, and t2. In order to solve this problem by

topological methods, we form a supergraph, shown in the bottom third of Figure

6, together with an artificial terminal T and the dummy edges f, and f2 that

connect t1 and t2 to t. Call the supergraph Go, and decompose it in a search

for the "K-acyclic" subgraphs such that every edge is on a path from s to t,

including also both terminals tI and t2. The search tree, including the dummy

edges, is shown in Figure 7 and the subgraphs corresponding to the nodes of

the tree, with the dummy edges deleted, are displayed in Figure 8.

The first two children of Go, G1, and G2 , result from removing the dummy

edges; thus they are elder brothers to every ancestor of every node of the

tree and the dummy edges are not removed again because of the weight restric-

tion. This guarantees that both terminals t] and t2 are included in every K-

acyclic subgraph.

G0 is cyclic; following Rule I it is decycled by removing edge cI to form

G1 , and c2 is removed to form G2. G, is K-acyclic; following Rule 3, remove

the neutral sequences a, c2 and d-e, forming the children G3, G4 and G5, which

are also K-acyclic. Following Rule 4, the children of G3, G6 and G7, have the

same internodal weights as the younger brothers of G3, c2 and d-e. Likewise

the child of G4, Ga, has the same internodal weight as G5, d-e.

The other principal branch of the tree, starting with the removal of C2 ,

yields a mixture of K-cyclic and K-acyclic subgraphs. G2 is K-cyclic; by the

corollary to Rule 1, the decycling continues by stripping the edges a, b and

4d-e, forming the children G9 , Gl0 , and Gil. G9 is K-cyclic, but it cannot be

decomposed any further without breaking the connection from s to t; therefore

it is necessary to backtrack. Gl0 is K-cyclic; however, its child, G12, by

removing d-e, is K-acyclic. Likewise, the last child of G2, G1 1 , obtained by

removing d-e, is K-acyclic. The formula for S3T is given in Figure 9.
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6.0 Complexity analysis

An important aspect of evaluating computer programs and algorithms and

other types of data processing systems is frequently called "complexity

analysis;" we shall define it as "classifying an algorithm into a category ot

difficulty, based on the maximum number of computer operations required to

obtain a solution." Three types of complexity are discussed in the litera-

ture, in increasing order of the number of computer operations required:

linear time, polynomial time and exponential time or NP-completeness.

1. Linear time implies that the number of computer operations does not

exceed a linear function of the system size n (i.e., the number of paths or

variables, or the number of edges or vertices or both the edges and the

vertices, etc.). Linear time is obviously desirable, but it is usually

unattainable in practice, because computer time invariably grows faster than

the system size.

2. Polynomial time means that under worst-case conditions, the number of

operations does not exceed a polynomial function of n; problems are further

classified according to the order of the polynomial function: n2 , n3 , etc.

Polynomial time is desirable, and frequently it is attainable in practice, it

not with worst cases, because of short cuts that are built into the algorithm,

or because the analyst modifies the problem in such a way that reasonable

amounts of computer time are needed. Refer to the examples in Section 3.b of

this paper that describe ways of organizing the paths in certain special cases

to make SDP operate in polynomial time.

3. NP-completeness means that for the worst case, the number of

operations is an exponential function of n. Since a data structure being

processed is not always at its worst case, a different way of defining

NP-completeness is it is not possible to guarantee that the algorithm being
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processed will not exceed polynomial time. The fact that the worst case may

be exponential, however, does not necessarily mean that the computer time

grows without limits. First, the problem usually is not the worst case;

second, the analyst may have the option of simplifying and reorganizing the

data so as to keep the computer time within reason.

6.1 Comparing TR and IE

6.1.1 The worst case

In the foregoing section 3.6, we discussed the exponential-time property

of inclusion-exclusion, in comparison to that of the Abraham SDP algorithm.

The worst case has two conditions:

a. the number of terms in the system reliability formula is an

exponential function of the number of paths

b. the size of the formula is an exponential function of the number of

components in the system.

IE and TR both generate the same formula, which is a polynomial in IE and

a nested and factored form in TR, the TR factors being 1:1 with the IE terms

and having the same signs. Even though the resulting computed value of the

system reliability would be the same for either version of the formula, there

is a great difference not only in the appearance of the two different

versions, but also in the way the forms are obtained. With respect to the

counting of terms, whereas IE might duplicate a given term many times, and

then cancel it out every time it appears after the first time, TR obtains the

corresponding factor just once, with no duplications. Thus ,R is linear in

the number of p-acyclic subgraphs, though not in the number of paths; IE has

no comparable property.

The size of the formula is smaller with TR than in IE, because the number

of variable entries is a fraction of the number of entries in IE. Every time
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a TR factor is generated, the formula is augmented by a product involving a

single component, or at most the product of elements of a neutral sequence.

By contrast, the corresponding IE term could be of size n, where n is the

number of variables in the system.

6.1.2 TR uses less storage and does not process cycles

TR also uses less storage than IE. With IE, it is necessary to store

every term, in order to cancel out terms that are zeroed out. Since these

cancellations represent cycles in the system graph, computer time is wasted

processing cycles that do not enter the formula. In this respect TR is much

more efficient than IE. Cycles are never processed because of Rule 1, and the

factors that enter the formula represent only the noncancelling p-acyclic

subgraphs. Only the factor at the incumbent position of the pointer has to be

stored, and a minimal amount of additional information, such as the value o± a

pre-existing factor that is the result of all prior data processing and

calculations.

6.1.3 Advantages of TR

The major advantages of TR have been discussed in the foregoing: shorter

formula, less storage, much less computer time and the ability to process a

wider variety of large and complex networks. Another advantage is that it is

unnecessary to find the paths before starting the calculations, as is the case

with IE.

6.1.4 NP-completeness

Although TR is more efficient than conventional IE, it has the same

NP-completeness property that both SDP and IE have. The fact that an

algorithm has this property does not mean that large, complicated systems

cannot be solved with reasonable computer time. Many exponential algorithms,

for example, the simplex method of linear programming, are solved by computers
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with great economic benefit to the user, because the speed of the computer and

its accuracy as compared to that of human calculation, makes it worthwhile to

use automatic calculation, even though there is theoretically virtually no

limit to the time required, for a worst case that does not occur in practice.

As a further guide to the theory of useful NP-complete algorithms, refer to

the interesting book by Garey and Johnson [5].
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